Restriction of the Moment Map to Certain Non-lagrangian Submanifolds

نویسنده

  • MICHAEL OTTO
چکیده

Let T × M → M be a Hamiltonian torus action on a connected symplectic manifold M for which the associated moment map Φ : M → t∗ is proper as a map into a convex open set ρ ⊆ t∗. We consider a closed submanifold Q of M and show that under certain local conditions on Q one has Φ(Q) = Φ(M). We apply this result in the special case that Q arises as the fixed point set of some involution σ on M which is not necessarily antisymplectic.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isotropic Lagrangian Submanifolds in Complex Space Forms

In this paper we study isotropic Lagrangian submanifolds , in complex space forms . It is shown that they are either totally geodesic or minimal in the complex projective space , if . When , they are either totally geodesic or minimal in . We also give a classification of semi-parallel Lagrangian H-umbilical submanifolds.

متن کامل

Harmonic Lagrangian submanifolds and fibrations in Kähler manifolds

In this paper we introduce harmonic Lagrangian submanifolds in general Kähler manifolds, which generalize special Lagrangian submanifolds in Calabi-Yau manifolds. We will use the deformation theory of harmonic Lagrangian submanifolds in Kähler manifolds to construct minimal Lagrangian torus in certain Kähler-Einstein manifolds with negative first Chern class.

متن کامل

Coisotropic Intersections

In this paper we make the first steps towards developing a theory of intersections of coisotropic submanifolds, similar to that for Lagrangian submanifolds. For coisotropic submanifolds satisfying a certain stability requirement we establish persistence of coisotropic intersections under Hamiltonian diffeomorphisms, akin to the Lagrangian intersection property. To be more specific, we prove tha...

متن کامل

H-minimal Lagrangian fibrations in Kähler manifolds and minimal Lagrangian vanishing tori in Kähler-Einstein manifolds

H-minimal Lagrangian submanifolds in general Kähler manifolds generalize special Lagrangian submanifolds in Calabi-Yau manifolds. In this paper we will use the deformation theory of H-minimal Lagrangian submanifolds in Kähler manifolds to construct minimal Lagrangian torus in certain Kähler-Einstein manifolds with negative first Chern class.

متن کامل

On a new construction of special Lagrangian immersions in complex Euclidean space

Special Lagrangian submanifolds of complex Euclidean space C have been studied widely over the last few years. These submanifolds are volume minimizing and, in particular, they are minimal submanifolds. When n = 2, special Lagrangian surfaces of C are exactly complex surfaces with respect to another orthogonal complex structure on R ≡ C. A very important problem here, and even a good starting p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008